50 research outputs found

    Single-Particle Analysis in an Indoor Working Environment in Valencia, Spain

    Full text link
    Actually is recognized the importance of indoor air environment and associated health risks. In order to evaluate i n- door air quality and to characterize the particles in terms of size, composition and shape were done measurements of the suspended particulate matter in a mechanical workshop of the Polytechnic University of Valencia (Spain). These meas-urements were performed using scanning electron microscope (SEM) with energy dispersive X-ray microanalysis (EDX) and image digital analysis. To differentiation of individual particles in the fine- ultrafine fraction, in some case, was used the atomic force microscopy (AFM). Multivariate statistics, such as hierarchical cluster analysis and factor analy-sis were appliqued and allowed to establish groups of elements and in this way to facilitate the identification of the natural and anthropogenic sources. It is confirmed that indoor air is influenced by outdoor surroundings and the anthro-pogenic sources due to the daily activity.Llinares Millán, J.; Llinares Millán, MDC.; Moreno Algaba, V.; Millán González, MDC. (2012). Single-Particle Analysis in an Indoor Working Environment in Valencia, Spain. Journal of Analytical Sciences, Methods and Instrumentation. 2(1):29-32. doi:10.4236/jasmi.2012.21006S29322

    Elapsed time on first buying triggers brand choices within a category: A virtual reality-based study

    Full text link
    This study integrates neuroscientific tools such as data from eye movements, store navigation, and brand choice in a virtual supermarket into a single source data analysis to examine consumer choice, customer experience, and shopping behavior in a store. Through qualitative comparative analysis, the findings suggest that a high level of attention to a brand and slow eye movements between brands lead to additional brand purchases within the product category. This study points out that the key driver of additional brand choices is the time buyers spend on the first choice, showing that the allocation of less for the first choice triggers additional purchases Within the product category and, therefore, increases sales. In addition, this study discusses practical and methodological implications for retailers, manufacturers, and researchers. (C) 2015 Elsevier Inc All rights reserved.The authors thank the reviewers for their careful reading and suggestions. Also thanks to Jaime Guixeres, LabHuman, Universitat Politecnica de Valencia, for his comments in an earlier version of the paper. The Spanish Ministry of Economia y Competitividad (Project TIN 2013-45,736-R) supported this research.Bigné-Alcaiz, E.; Llinares Millán, MDC.; Torrecilla Moreno, C. (2016). Elapsed time on first buying triggers brand choices within a category: A virtual reality-based study. Journal of Business Research. 69(4):1423-1427. https://doi.org/10.1016/j.jbusres.2015.10.119S1423142769

    Exploring the relationship between co-creation and satisfaction using QCA

    Full text link
    ustomer behavior is one of the key components of value co-creation. Several authors believe that co-creation generates satisfaction. However, few studies exist that focus on that relationship. This study explores the relationship between value co-creation and customer satisfaction in spa services through a fuzzy-set qualitative comparative analysis (fsQCA). QCA analysis allows exploring the relations between the variables. The main contribution of this article is going beyond identifying the concrete co-creation variables that relate to satisfaction. The sample consists of hotel clients that use the spa service.Navarro, S.; Llinares Millán, MDC.; Garzon, D. (2016). Exploring the relationship between co-creation and satisfaction using QCA. Journal of Business Research. 69(4):1336-1339. doi:10.1016/j.jbusres.2015.10.103S1336133969

    Design Attributes Influencing the Success of Urban 3D Visualizations: Differences in Assessments According to Training and Intention

    Full text link
    [EN] The graphic tools most widely used for communicating the design of future urban spaces are 3D visualizations. These virtual images allow graphic designers to manipulate conditions to embellish the final image they present. But, what design attributes are associated with positive assessments? This paper attempts to identify the key design attributes for a successful proposal and observes whether intention (assess the image versus assess the project) and observer training (architect versus non-architect) influence that relationship. A field study was carried out using assessments from 225 individuals. Results show that color, nature, and architecture are fundamental elements in successful proposals. Significant differences in assessments have also been observed according to the training and intentions of the assessorsThis work was supported by Ministerio de Economía y Competitividad (Spain) [grant no. TIN2013-45736-R].Llinares Millán, MDC.; Iñarra Abad, S.; Guixeres Provinciale, J. (2018). Design Attributes Influencing the Success of Urban 3D Visualizations: Differences in Assessments According to Training and Intention. Journal of Urban Technology. https://doi.org/10.1080/10630732.2018.1444873

    Bases metodológicas para una nueva plataforma de medida del comportamiento humano en entornos virtuales

    Full text link
    [ES] Para evaluar la funcionalidad y el rendimiento de un espacio se analiza el comportamiento de sus usuarios. Este se ha medido tradicionalmente a partir de encuestas y observación, con las limitaciones de tratarse de valoraciones subjetivas, influenciadas por el entrevistador y/o observador, y, en el caso de la observación, evaluar el espacio a posteriori, una vez ejecutado el proyecto. Hoy en día, la realidad virtual solventa estos problemas, al ser capaz de representar escenarios de forma realista, inmersiva e interactiva, permitiendo analizar con un bajo coste el comportamiento de los usuarios antes de que se ejecuten los proyectos, en un entorno controlado. El presente artículo presenta las bases metodológicas para una nueva plataforma de medida del comportamiento humano en entornos virtuales, que ayudará en la toma de decisiones a través de la pre-evaluación de los espacios antes de ser ejecutados. Se define una metodología aplicable con la tecnología actual, a partir de la cual se obtendrán métricas con las que optimizar la funcionalidad y el rendimiento de espacios de futura construcción o remodelación de los ya existentes. La herramienta es transversal ya que puede aplicarse a cualquier proyecto que tenga como elemento fundamental el tránsito de personas, ya sean espacios comerciales, culturales, dotacionales o de ocio, y se presentan diferentes ejemplos de aplicación práctica.[EN] Human behavior is analyzed to evaluate the functionality and efficiency of a public space. It was classically measured from surveys and observation, however, those measurements have some limitations. Firstly, they are subjective valuations and are influenced by the interviewer and/or the observer. In addition, the observation oblige us to make that evaluation subsequently, when the project has been executed. Nowadays, virtual reality resolves those problems as a result of its capacity to represent scenarios on a realistic, immersive and interactive way. It allows to analyze human behaviour before the execution of projects at a low cost and controlled way. This article presents the methodological bases for a new platform for measuring human behaviour in virtual environments. It will assist in the decision-making process through the pre-evaluation of different spaces before being executed. An applicable methodology were explained from which metrics are created and it allows to optimize functionality and efficiency of a new construction or remodeling. This is a cross-wise platform and can be applied to any project where the human transit is a central element: commercial, cultural, dotacional or leisure spaces. Different applied examples in study were presented.The present research has been financed by the Ministry of Economy and Competitiveness. Spain (project TIN2013-45736-R).Marín-Morales, J.; Torrecilla-Moreno, C.; Guixeres Provinciale, J.; Llinares Millán, MDC. (2017). Methodological bases for a new platform for the measurement of human behaviour in virtual environments. DYNA: Ingeniería e Industria. 92(1):34-38. https://doi.org/10.6036/7963S343892

    Affective evaluation of the luminous environment in university classrooms

    Full text link
    [EN] Universities worldwide are adopting new teaching methods and using new educational technologies. This progress requires changes in their physical environment, especially in the case of lighting, which is regarded as fundamental because of its recognised effect on the learning process. Different light levels are needed for new classroom tasks. The aim of the present paper is to analyse the affective impressions of university students with regard to the luminous environment in their classroom, in relation to the different tasks they carry out there. This analysis is conducted in the frame of Kansei Engineering. A sample of 854 students assessed in situ the luminous environment of 29 classrooms. In the first stage, subjective evaluation scales adapted to the students were defined and then related to the classroom tasks. The results show that students' affective responses in the assessment of the luminous environment in their classroom can be explained through the following dimensions: Clear-efficient, Uniform, Cheerful-colourful, Warm cosy, Surprising-amazing and Intense-brilliant. The relation of these dimensions to the tasks shows that the luminous environments in the classrooms need to be changed in accordance with the nature of the tasks. The environment should be different for the tasks groups of Writing-reading, Reflecting-discussing (for collaborative work) and Paying attention. It seems, therefore, that new classroom lighting guidelines, tailored to the new methodologies and technologies, are needed.This research was supported by Ministerio de Economia, Industria y Competitividad, Spain (project BIA2017-86157-R).Castilla-Cabanes, N.; Llinares Millán, MDC.; Bisegna, F.; Blanca Giménez, V. (2018). Affective evaluation of the luminous environment in university classrooms. Journal of Environmental Psychology. 58:52-62. https://doi.org/10.1016/j.jenvp.2018.07.010S52625

    Effects of Classroom Design on the Memory of University Students: From a Gender Perspective

    Full text link
    [EN] Classroom design has important effects on the cognitive functions of students. However, this relationship has rarely been analysed in terms of gender. The aim of the present study, therefore, is to analyse the influence of different design variables (classroom geometry, wall colour, and artificial lighting) on university students' memories from a gender perspective. To do so, 100 university students performed a memory task while visualising different design configurations using a virtual reality setup. Key results show that certain parameters, such as 5.23 m classroom width, 10,500 Kelvin lighting colour temperature, or the blue hue on the walls influence men and women in a similar way, while a purple hue or walls with low colour saturation can generate significantly different behaviour, especially in cognitive processes such as short-term memory. In this study, the use of virtual reality proved to be a useful tool to explore the design effects of virtual learning environments, increasingly present due to training trends and catalysed by the 2020 pandemic. This is a turning point and an international novelty as it will enable the design of classrooms (both physical and virtual) that maximise the cognitive functions of learners, regardless of gender.This research was funded by the Spanish Ministry of Economy, Industry, and Competitiveness (Project BIA2017-86157-R, and PRE2018-084051). The first author is supported by Ministry of Science, Innovation and Universities of Spain (FPU19/03531)Nolé-Fajardo, ML.; Higuera-Trujillo, JL.; Llinares Millán, MDC. (2021). Effects of Classroom Design on the Memory of University Students: From a Gender Perspective. International Journal of Environmental research and Public Health (Online). 18(17):1-17. https://doi.org/10.3390/ijerph18179391S117181

    Digital space: comparative evaluation of the latest architectural techniques

    Full text link
    [EN] The great technological evolution of architectural rendering resources over the last few decades has opened up a new range of possibilities to visualise the non-built space.The spatial immersion systems, developed by the videogame industry, have entered in the sceptical area of architectural rendering, offering a series of undeniable advantages including enhancing the understanding of spaces to inexpert people.In order to study the benefits of these new virtual tools, an experimental study was carried out so as to compare the user response to technological and graphic supports.With a simple of 84 individuals, the obtained data reveal significant differences in the space perception depending on the format and support used to their representation. The results of this study allow us to reflect on new means of architectural rendering in the professional and teaching field.[ES] La gran evolución tecnológica en los medios de representación arquitectónica durante las últimas décadas, ha abierto un nuevo abanico de posibilidades digitales para visualizar el espacio no construido. Los sistemas de inmersión espacial, desarrollados inicialmente por la industria del videojuego, han ido adentrándose en el escéptico ámbito de la representación arquitectónica, ofreciendo una serie de innegables ventajas, entre ellas facilitar la comprensión de los espacios al no especializado. Con el objeto de estudiar las bondades de estas nuevas herramientas virtuales, se llevó a cabo un estudio experimental que compara la respuesta del usuario ante distintos soportes gráficos y tecnológicos. Con una muestra de 84 participantes, los datos obtenidos revelan importantes diferencias en la percepción del espacio en función del formato y soporte empleado para su representación. Los resultados de este trabajo permiten reflexionar en torno a los nuevos medios de representar la arquitectura, en el ámbito profesional y el docente.Este trabajo de investigación ha sido financiado por el Ministerio de Economía y Competitividad de España (proyecto TIN2013-45736-R).Higuera-Trujillo, JL.; López-Tarruella Maldonado, J.; Llinares Millán, C.; Iñarra Abad, S. (2017). El espacio digital: comparativa de las últimas técnicas de visualización arquitectónica. EGA. Revista de Expresión Gráfica Arquitectónica. 22(31):102-111. https://doi.org/10.4995/ega.2017.4234SWORD102111223

    Improving the Pedestrian's Perceptions of Safety on Street Crossings. Psychological and Neurophysiological Effects of Traffic Lanes, Artificial Lighting, and Vegetation

    Full text link
    [EN] The effect that the physical characteristics of urban design have on the pedestrian's perceptions of safety is a fundamental aspect of city planning. This is particularly so with street crossings, where the pedestrian has to make a decision. This paper analyses how pedestrians are affected by number of traffic lanes, lighting colour temperature, and nearby vegetation as they cross roads. Perceptions of safety were quantified by means of the psychological and neurophysiological responses of 60 participants to 16 virtual reality scenarios (4 day and 12 night), based on existing urban design variables. The results showed differences between night-time and daytime scenarios, which suggests that there is a need to analyse both situations. As to the design guidelines, it was observed that safety is improved by reducing the number of traffic lanes and nearby vegetation, and by using a lighting colour temperature of 4500 K. However, the analysis of the variables showed that combined effects produce different results to those obtained from the analysis of individual elements. This result is essential information for urban managers in their assessments of whether particular interventions will improve crossing points.This work was supported by the Direccion General de Trafico-Ministerio del Interior de Espana (Project SPIP2017-02220).Llinares Millán, MDC.; Higuera-Trujillo, JL.; Montañana, A.; Castilla-Cabanes, N. (2020). Improving the Pedestrian's Perceptions of Safety on Street Crossings. Psychological and Neurophysiological Effects of Traffic Lanes, Artificial Lighting, and Vegetation. International Journal of Environmental research and Public Health (Online). 17(22):1-20. https://doi.org/10.3390/ijerph17228576S1201722Cho, G., Rodríguez, D. A., & Khattak, A. J. (2009). The role of the built environment in explaining relationships between perceived and actual pedestrian and bicyclist safety. Accident Analysis & Prevention, 41(4), 692-702. doi:10.1016/j.aap.2009.03.008Talavera, R., Soria, J. A., & Valenzuela, L. M. (2014). La calidad peatonal como método para evaluar entornos de movilidad urbana. Documents d’Anàlisi Geogràfica, 60(1), 161. doi:10.5565/rev/dag.55Bernhoft, I. M., & Carstensen, G. (2008). Preferences and behaviour of pedestrians and cyclists by age and gender. Transportation Research Part F: Traffic Psychology and Behaviour, 11(2), 83-95. doi:10.1016/j.trf.2007.08.004Liu, J. Y. (2014). Fear of falling in robust community-dwelling older people: results of a cross-sectional study. Journal of Clinical Nursing, 24(3-4), 393-405. doi:10.1111/jocn.12613Turner, S., Fitzpatrick, K., Brewer, M., & Park, E. S. (2006). Motorist Yielding to Pedestrians at Unsignalized Intersections. Transportation Research Record: Journal of the Transportation Research Board, 1982(1), 1-12. doi:10.1177/0361198106198200102Landis, B. W., Vattikuti, V. R., Ottenberg, R. M., McLeod, D. S., & Guttenplan, M. (2001). Modeling the Roadside Walking Environment: Pedestrian Level of Service. Transportation Research Record: Journal of the Transportation Research Board, 1773(1), 82-88. doi:10.3141/1773-10Feliciani, C., Gorrini, A., Crociani, L., Vizzari, G., Nishinari, K., & Bandini, S. (2020). Calibration and validation of a simulation model for predicting pedestrian fatalities at unsignalized crosswalks by means of statistical traffic data. Journal of Traffic and Transportation Engineering (English Edition), 7(1), 1-18. doi:10.1016/j.jtte.2019.01.004Karndacharuk, A. (Aut), Wilson, D. J., & Dunn, R. C. M. (2014). Safety Performance Study of Shared Pedestrian and Vehicle Space in New Zealand. Transportation Research Record: Journal of the Transportation Research Board, 2464(1), 1-10. doi:10.3141/2464-01Knight, C. (2010). Field surveys of the effect of lamp spectrum on the perception of safety and comfort at night. Lighting Research & Technology, 42(3), 313-329. doi:10.1177/1477153510376794Fotios, S., Unwin, J., & Farrall, S. (2014). Road lighting and pedestrian reassurance after dark: A review. Lighting Research & Technology, 47(4), 449-469. doi:10.1177/1477153514524587Hidayetoglu, M. L., Yildirim, K., & Akalin, A. (2012). The effects of color and light on indoor wayfinding and the evaluation of the perceived environment. Journal of Environmental Psychology, 32(1), 50-58. doi:10.1016/j.jenvp.2011.09.001Tantanatewin, W., & Inkarojrit, V. (2016). Effects of color and lighting on retail impression and identity. Journal of Environmental Psychology, 46, 197-205. doi:10.1016/j.jenvp.2016.04.015Haans, A., & de Kort, Y. A. W. (2012). Light distribution in dynamic street lighting: Two experimental studies on its effects on perceived safety, prospect, concealment, and escape. Journal of Environmental Psychology, 32(4), 342-352. doi:10.1016/j.jenvp.2012.05.006Suzer, O. K., Olgunturk, N., & Guvenc, D. (2018). The effects of correlated colour temperature on wayfinding: A study in a virtual airport environment. Displays, 51, 9-19. doi:10.1016/j.displa.2018.01.003Bratman, G. N., Hamilton, J. P., Hahn, K. S., Daily, G. C., & Gross, J. J. (2015). Nature experience reduces rumination and subgenual prefrontal cortex activation. Proceedings of the National Academy of Sciences, 112(28), 8567-8572. doi:10.1073/pnas.1510459112Chang, C.-Y., & Chen, P.-K. (2005). Human Response to Window Views and Indoor Plants in the Workplace. HortScience, 40(5), 1354-1359. doi:10.21273/hortsci.40.5.1354Van den Berg, A. E., Hartig, T., & Staats, H. (2007). Preference for Nature in Urbanized Societies: Stress, Restoration, and the Pursuit of Sustainability. Journal of Social Issues, 63(1), 79-96. doi:10.1111/j.1540-4560.2007.00497.xLohr, V. I., & Pearson-Mims, C. H. (2006). Responses to Scenes with Spreading, Rounded, and Conical Tree Forms. Environment and Behavior, 38(5), 667-688. doi:10.1177/0013916506287355Foltête, J.-C., & Piombini, A. (2007). Urban layout, landscape features and pedestrian usage. Landscape and Urban Planning, 81(3), 225-234. doi:10.1016/j.landurbplan.2006.12.001Smith, A. L. (2009). Contribution of Perceptions in Analysis of Walking Behavior. Transportation Research Record: Journal of the Transportation Research Board, 2140(1), 128-136. doi:10.3141/2140-14Granié, M.-A., Brenac, T., Montel, M.-C., Millot, M., & Coquelet, C. (2014). Influence of built environment on pedestrian’s crossing decision. Accident Analysis & Prevention, 67, 75-85. doi:10.1016/j.aap.2014.02.008Chu, X., Guttenplan, M., & Baltes, M. R. (2004). Why People Cross Where They Do: The Role of Street Environment. Transportation Research Record: Journal of the Transportation Research Board, 1878(1), 3-10. doi:10.3141/1878-01Dommes, A., & Cavallo, V. (2011). The role of perceptual, cognitive, and motor abilities in street-crossing decisions of young and older pedestrians. Ophthalmic and Physiological Optics, 31(3), 292-301. doi:10.1111/j.1475-1313.2011.00835.xDommes, A., Cavallo, V., Dubuisson, J.-B., Tournier, I., & Vienne, F. (2014). Crossing a two-way street: comparison of young and old pedestrians. Journal of Safety Research, 50, 27-34. doi:10.1016/j.jsr.2014.03.008Lipovac, K., Vujanic, M., Maric, B., & Nesic, M. (2013). Pedestrian Behavior at Signalized Pedestrian Crossings. Journal of Transportation Engineering, 139(2), 165-172. doi:10.1061/(asce)te.1943-5436.0000491Foot, H. C., Thomson, J. A., Tolmie, A. K., Whelan, K. M., Morrison, S., & Sarvary, P. (2006). Children’s understanding of drivers’ intentions. British Journal of Developmental Psychology, 24(4), 681-700. doi:10.1348/026151005x62417Papadimitriou, E., Yannis, G., & Golias, J. (2009). A critical assessment of pedestrian behaviour models. Transportation Research Part F: Traffic Psychology and Behaviour, 12(3), 242-255. doi:10.1016/j.trf.2008.12.004Ewing, R., & Handy, S. (2009). Measuring the Unmeasurable: Urban Design Qualities Related to Walkability. Journal of Urban Design, 14(1), 65-84. doi:10.1080/13574800802451155Ewing, R., Handy, S., Brownson, R. C., Clemente, O., & Winston, E. (2006). Identifying and Measuring Urban Design Qualities Related to Walkability. Journal of Physical Activity and Health, 3(s1), S223-S240. doi:10.1123/jpah.3.s1.s223Kort, Y. A. W. de, IJsselsteijn, W. A., Kooijman, J., & Schuurmans, Y. (2003). Virtual Laboratories: Comparability of Real and Virtual Environments for Environmental Psychology. Presence: Teleoperators and Virtual Environments, 12(4), 360-373. doi:10.1162/105474603322391604Steuer, J. (1992). Defining Virtual Reality: Dimensions Determining Telepresence. Journal of Communication, 42(4), 73-93. doi:10.1111/j.1460-2466.1992.tb00812.xBakker, I., van der Voordt, T., Vink, P., & de Boon, J. (2014). Pleasure, Arousal, Dominance: Mehrabian and Russell revisited. Current Psychology, 33(3), 405-421. doi:10.1007/s12144-014-9219-4Gifford, R., Hine, D. W., Muller-Clemm, W., Reynolds, D. J., & Shaw, K. T. (2000). Decoding Modern Architecture. Environment and Behavior, 32(2), 163-187. doi:10.1177/00139160021972487Aspinall, P., Mavros, P., Coyne, R., & Roe, J. (2013). The urban brain: analysing outdoor physical activity with mobile EEG. British Journal of Sports Medicine, 49(4), 272-276. doi:10.1136/bjsports-2012-091877Gidlow, C. J., Jones, M. V., Hurst, G., Masterson, D., Clark-Carter, D., Tarvainen, M. P., … Nieuwenhuijsen, M. (2016). Where to put your best foot forward: Psycho-physiological responses to walking in natural and urban environments. Journal of Environmental Psychology, 45, 22-29. doi:10.1016/j.jenvp.2015.11.003Higuera-Trujillo, J. L., Llinares Millán, C., Montañana i Aviñó, A., & Rojas, J.-C. (2019). Multisensory stress reduction: a neuro-architecture study of paediatric waiting rooms. Building Research & Information, 48(3), 269-285. doi:10.1080/09613218.2019.1612228Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. doi:10.3758/bf03193146Tilley, S., Neale, C., Patuano, A., & Cinderby, S. (2017). Older People’s Experiences of Mobility and Mood in an Urban Environment: A Mixed Methods Approach Using Electroencephalography (EEG) and Interviews. International Journal of Environmental Research and Public Health, 14(2), 151. doi:10.3390/ijerph14020151Slater, M., Usoh, M., & Steed, A. (1994). Depth of Presence in Virtual Environments. Presence: Teleoperators and Virtual Environments, 3(2), 130-144. doi:10.1162/pres.1994.3.2.130Knyazev, G. G., Savostyanov, A. N., & Levin, E. A. (2004). Alpha oscillations as a correlate of trait anxiety. International Journal of Psychophysiology, 53(2), 147-160. doi:10.1016/j.ijpsycho.2004.03.001Choi, Y., Kim, M., & Chun, C. (2015). Measurement of occupants’ stress based on electroencephalograms (EEG) in twelve combined environments. Building and Environment, 88, 65-72. doi:10.1016/j.buildenv.2014.10.003Keil, A., Müller, M. M., Ray, W. J., Gruber, T., & Elbert, T. (1999). Human Gamma Band Activity and Perception of a Gestalt. The Journal of Neuroscience, 19(16), 7152-7161. doi:10.1523/jneurosci.19-16-07152.1999Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. doi:10.1016/j.jneumeth.2003.10.009Gudmundsson, S., Runarsson, T. P., Sigurdsson, S., Eiriksdottir, G., & Johnsen, K. (2007). Reliability of quantitative EEG features. Clinical Neurophysiology, 118(10), 2162-2171. doi:10.1016/j.clinph.2007.06.018Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4-5), 411-430. doi:10.1016/s0893-6080(00)00026-5Slater, M., & Steed, A. (2000). A Virtual Presence Counter. Presence: Teleoperators and Virtual Environments, 9(5), 413-434. doi:10.1162/105474600566925Fotios, S., & Yao, Q. (2018). The association between correlated colour temperature and scotopic/photopic ratio. Lighting Research & Technology, 51(5), 803-813. doi:10.1177/1477153518779637Loewen, L. J., Steel, G. D., & Suedfeld, P. (1993). Perceived safety from crime in the urban environment. Journal of Environmental Psychology, 13(4), 323-331. doi:10.1016/s0272-4944(05)80254-3Boyce, P. R., Eklund, N. H., Hamilton, B. J., & Bruno, L. D. (2000). Perceptions of safety at night in different lighting conditions. Lighting Research and Technology, 32(2), 79-91. doi:10.1177/096032710003200205Peña-García, A., Hurtado, A., & Aguilar-Luzón, M. C. (2015). Impact of public lighting on pedestrians’ perception of safety and well-being. Safety Science, 78, 142-148. doi:10.1016/j.ssci.2015.04.009Fitzpatrick, C. D., Harrington, C. P., Knodler, M. A., & Romoser, M. R. E. (2014). The influence of clear zone size and roadside vegetation on driver behavior. Journal of Safety Research, 49, 97.e1-104. doi:10.1016/j.jsr.2014.03.006Kuo, F. E. (2001). Coping with Poverty. Environment and Behavior, 33(1), 5-34. doi:10.1177/00139160121972846Mulckhuyse, M., & Theeuwes, J. (2010). Unconscious attentional orienting to exogenous cues: A review of the literature. Acta Psychologica, 134(3), 299-309. doi:10.1016/j.actpsy.2010.03.002Fitzpatrick, C. D., Samuel, S., & Knodler, M. A. (2016). Evaluating the effect of vegetation and clear zone width on driver behavior using a driving simulator. Transportation Research Part F: Traffic Psychology and Behaviour, 42, 80-89. doi:10.1016/j.trf.2016.07.002Mok, J.-H., Landphair, H. C., & Naderi, J. R. (2006). Landscape improvement impacts on roadside safety in Texas. Landscape and Urban Planning, 78(3), 263-274. doi:10.1016/j.landurbplan.2005.09.00

    Subjective assessment of university classroom environment

    Full text link
    [EN] Research into the design of learning environments is warranted as the classroom space impacts on students' wellbeing and learning performance. Studies on subjective evaluation of classrooms usually focus on the influence of more objective aspects like temperature, light, sound, etc., based on concepts or attributes defined by experts. Thus, the attributes used to find relations with design parameters might not be recognised by users, thereby conditioning the evaluation process itself. This paper aims to analyse students' affective response to a university classroom in their own words, and then, after obtaining the semantic space, to identify the design elements that generate a positive affective response. This analysis was carried out implementing the Semantic Differential method in the framework of Kansei Engineering. A sample of 918 university students was assessed in situ in 30 university classrooms. The results show that students' affective structure in relation to their classroom comprises six independent factors: functionality and layout, cosy and pleasant, concentration and comfort, modern design, daylight and outward facing, and artificial lighting. From these factors, efforts to improve the classroom environment should be directed mainly towards two aspects: improving classroom functionality-layout, which is significantly related to the work space allocated to students; and the sensation of cosy-pleasant which is generated by all the classroom design parameters, but in particular, those that refer to the relationship of the classroom with the outdoor environment.This research was supported by Ministerio de Economia y Competitividad, Spain (project TIN2013-45736-R)Castilla-Cabanes, N.; Llinares Millán, MDC.; Bravo, JM.; Blanca Giménez, V. (2017). Subjective assessment of university classroom environment. Building and Environment. 122:72-81. https://doi.org/10.1016/j.buildenv.2017.06.004S728112
    corecore